Dane Morgan


Room 244, Materials Science and Engineering
1509 University Avenue
Madison, WI 53706

Ph: (608) 265-5879
Fax: (608) 262-8353


  • B.A.Physics, Swarthmore College, Pennsylvania, 1992
  • M.A.Physics, University of California, Berkeley, 1994
  • Ph.D. Physics, University of California, Berkeley, 1998


  • B.A.Physics, Swarthmore College, Pennsylvania, 1992
  • M.A.Physics, University of California, Berkeley, 1994
  • Ph.D. Physics, University of California, Berkeley, 1998

Research Interests

  • Computational materials science for materials design
  • Ab initio electronic structure methods and multiscale techniques for large time / length scales and thermokinetics
  • Ab initio based modeling of electrochemical systems and processes
  • Application areas:Nuclear materials, Battery and fuel cell electrodes, Earth mantle materials, electronic materials

Awards, Honors and Societies

  • Top paper award, J. Phys-Condens. Mat. (2003)
  • Top paper award, CALPHAD journal (2005)
  • 3M Technical Nontenured Faculty Grant (2006-2008)
  • Vilas Associate Award (2013)


Google scholar page

[1] J. A. Gilbert, N. N. Kariuki, R. Subbaraman, A. J. Kropf, M. C. Smith, E. F. Holby, D. Morgan, and D. J. Myers, In Situ Anomalous Small-Angle X-ray Scattering Studies of Platinum Nanoparticle Fuel Cell Electrocatalyst Degradation, J Am Chem Soc 134, p. 14823-14833 (2012).

[2] S. Saha, A. Bengtson, K. L. Crispin, J. A. Van Orman, and D. Morgan, Effects of spin transition on diffusion of Fe(2+) in ferropericlase in Earth\'s lower mantle, Physical Review B 84 (2011).

[3] Y.-L. Lee, J. Kleis, J. Rossmeisl, Y. Shao-Horn, and D. Morgan, Prediction of solid oxide fuel cell cathode activity with first-principles descriptors, Energy & Environmental Science 4, p. 3966 (2011).

[4] S. Choudhury, L. Barnard, J. D. Tucker, T. R. Allen, B. D. Wirth, M. Asta, and D. Morgan, Ab-initio based modeling of diffusion in dilute bcc Fe–Ni and Fe–Cr alloys and implications for radiation induced segregation, Journal of Nuclear Materials 411, p. 1-14 (2011).

[5] N. Swaminathan, P. J. Kamenski, D. Morgan, and I. Szlufarska, Effects of grain size and grain boundaries on defect production in nanocrystalline 3C-SiC, Acta Materialia 58, p. 2843-2853 (2010).

[6] N. Pinney, J. D. Kubicki, D. S. Middlemiss, C. P. Grey, and D. Morgan, Density Functional Theory Study of Ferrihydrite and Related Fe-Oxyhydroxides, Chemistry of Materials 21, p. 5727-5742 (2009).

[7] Y. L. Lee, J. Kleis, J. Rossmeisl, and D. Morgan, Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes, Physical Review B 80, p. 224101 (2009).

[8] S. H. Shim, A. Bengtson, D. Morgan, W. G. Sturhahn, K. Cataiii, J. Y. Zhao, M. Lerche, and V. Prakapenka, Electronic and magnetic structures of the postperovskite-type Fe2O3 and implications for planetary magnetic records and deep interiors, Proceedings of the National Academy of Sciences 106, p. 5508-5512 (2009).

[9] E. F. Holby, W. C. Sheng, Y. Shao-Horn, and D. Morgan, Pt nanoparticle stability in PEM fuel cells: influence of particle size distribution and crossover hydrogen, Energy & Environmental Science 2, p. 865-871 (2009).

[10] D. Morgan, G. Ceder, and S. Curtarolo, High-throughput and data mining with ab initio methods, Measurement Science & Technology 16, p. 296-301 (2005).


More information on Prof. Morgan\'s research group can be found at http://matmodel.engr.wisc.edu/

Useful modeling tools from our group and others can be found at materialshub.org

Orcid ID:  http://orcid.org/0000-0002-4911-0046

Google scholar page: http://scholar.google.com/citations?user=ZzvI97IAAAAJ



Google Scholar


Fall 2015-2016

  • MS&E 560 - Fundamentals of Atomistic Modeling
  • MS&E 990 - Research and Thesis
  • MS&E 890 - Pre-Dissertator\'s Research
  • MS&E 803 - Special Topics in Materials Science
  • MS&E 790 - Master\'s Research or Thesis
  • Secondary Contact

    MSE 242
    Labs: MSE 201A, 201B (608/262-6798); MSE 137 (608/890-0968); ECB 3111, ECB 3113 (608/890-4617)

    Update Profile