Sage Kokjohn (he/him)

Phil and Jean Myers Associate Professor

PROFILE LINKS

Profile Photo

Room: Room 123
Engineering Research Building
1500 Engineering Dr.
Madison, WI 53706

Ph: (608) 263-1610
Fax: (608) 263-9870
kokjohn@wisc.edu

Primary Affiliation:
Mechanical Engineering

Additional Affiliations:
Engine Research Center

Publications

 Link to Curriculum Vitae

Link to Google Scholar Page

1.       Chuahy, F.D.F, and Kokjohn, S.L. “The Combination of Solid Oxide Fuel Cells and Advanced Combustion Engines: A Pathway to 70% Electric Efficiency,” Applied Energy, Accepted, 235:391-408, 2019. https://doi.org/10.1016/j.apenergy.2018.10.132

2.       Kavuri, C. and Kokjohn, S.L., “Exploring the Potential of Machine Learning in Reducing the Computational Time/Expense and Improving the Reliability of Engine Optimization Studies”, Int. J. Engine Research,, 2019. https://doi.org/10.1177/1468087418808949 

3.       Chuahy, F.D.F. and Kokjohn, S.L., “System and second law analysis of the effects of reformed fuel composition in "single" fuel RCCI combustion,” SAE Int. J. Engines, Accepted, Oct. 2018.

4.       Roberts, J.A., Chuahy, F.D.F., Roy, S., and Kokjohn, S.L., Isolation of the Parametric Effects of Pre-Blended Fuel on Low Load Gasoline Compression Ignition (GCI)”, Fuel, 237:522-535, 2019, doi: 10.1016/j.fuel.2018.09.150

5.       Kavuri, C., Paz, J., Staaden, D., and Kokjohn, S. L., “Experimental and Computational Study of Post Injection Strategies for Gasoline Compression Ignition (GCI) Combustion under High-Load Conditions: Understanding the Role of Premixed, Main and Post Injections in Soot Mitigation and Load Extension,” Fuel, 233:834-850, 2018. doi: 10.1016/j.fuel.2018.06.137.

6.       Chuahy, F.D.F, Olk, J., DelVescovo, D., and Kokjohn, S.L., “An Engine Size Scaling Method for Kinetically Controlled Combustion Strategies”, Int. J. Engine Research, In Press, 2018. doi: 10.1177/1468087418786130.

7.       Kavuri, C. and Kokjohn, S.L., “Computational Study to Identify Feasible Operating Space for a Mixed Mode Combustion Strategy: A Pathway for PCI High Load Operation,” Journal of Energy Resources Technology, 140(8), 2018. doi: 10.1115/1.4039548.

8.       Wissink, M., Curran, S.J., Kavuri, C. and Kokjohn, S.L., “Spray-Wall Interactions in a Small-Bore, Multi-Cylinder Engine Operating With Reactivity-Controlled Compression Ignition,” Journal of Engineering for Gas Turbines and Power, 140(9), 2018. doi: 10.1115/1.4039817.

9.       Benajes, J., Novella, R., Pastor, J.M., Hernandez-Lopez, A., and Kokjohn, S.L., “Computational Optimization of a Combustion System for a Stoichiometric DME Fueled Compression Ignition Engine,” Fuel, 223:20-31, 2018. doi: 10.1016/j.fuel.2018.03.022

10.   Li, Y., Jia, M., Kokjohn, S.L., Chang, Y., and Reitz, R.D., “Comprehensive Analysis of Exergy Destruction Sources in Different Engine Combustion Regimes,” Energy, 149:697-708, 2018. doi: 10.1016/j.energy.2018.02.081

11.   Benajes, J., Novella, R., Pastor, J.M., Hernandez-Lopez, A., and Kokjohn, S.L., “Computational optimization of the combustion system of a heavy duty direct injection diesel engine operating with dimethyl-ether,” Fuel, 218:127-139, 2018. doi: 10.1016/j.fuel.2018.01.020

12.   Wickman, D.D. and Kokjohn, S.L., “A Computational investigation of the potential for non-sooting fuels to enable ultra-low NOx and CO2 emissions,” Fuel, 216:648-684, 2018. doi: 10.1016/j.fuel.2017.12.014

13.   Chuahy, F.D.F, and Kokjohn, S.L., “Effects of reformed fuel composition in “single” fuel reactivity controlled compression ignition combustion,” Applied Energy, 208:1-11, 2017. doi: 10.1016/j.apenergy.2017.10.057

14.   Ren, S., Kokjohn, S.L., Wang, Z., Liu, H., Wang, B., Wang, J., "A Multi-Component Wide Distillation Fuel (Covering Gasoline, Jet Fuel and Diesel Fuel) Mechanism for Combustion and PAH Prediction," Fuel, 208:447-468, 2017. doi: 10.1016/j.fuel.2017.07.009

15.   Kavuri, C, and Kokjohn, S.L., “Computational Optimization of a Reactivity Controlled Compression Ignition (RCCI) Combustion System Considering Performance at Multiple Modes Simultaneously,” Fuel, 207:702-718, 2017. doi: 10.1016/j.fuel.2017.06.071

16.   Chuahy, F.D.F, and Kokjohn, S.L., “Effects of the Direct-Injected Fuel's Physical and Chemical Properties on Dual-Fuel Combustion,” Fuel, 207:729-740, 2017. doi: 10.1016/j.fuel.2017.06.039

17.   Chuahy, F.D.F, and Kokjohn, S.L., “High Efficiency Dual-Fuel Combustion through Thermochemical Recovery and Diesel Reforming,” Applied Energy, 195:503-522, 2017. doi: 10.1016/j.apenergy.2017.03.078

18.   Delvescovo, D., Kokjohn, S.L., and Reitz, R.D., “The Effects of Charge Preparation, Fuel Stratification, and Premixed Fuel Chemistry on Reactivity Controlled Compression Ignition (RCCI) Combustion,” SAE Int. J. Engines, 10(4):1491-1505, 2017. doi: 10.4271/2017-01-0773.

19.   Kavuri, C., Paz, J., and Kokjohn, S.L., “A Comparison of Reactivity Controlled Compression Ignition (RCCI) and Gasoline Compression Ignition (GCI) Strategies at High Load, Low Speed Conditions,” Energy Conversion and Management, 127:324-341, 2016. doi: 10.1016/j.enconman.2016.09.026

20.   Li, Y, Jia, M., Chang, Y., Kokjohn, S.L., and Reitz, R.D., “Thermodynamic energy and exergy analysis of three different engine combustion regimes,” Applied Energy, 180:849-858, 2016. doi: 10.1016/j.apenergy.2016.08.038

21.   Ra, Y. , Chuahy, F., and Kokjohn, S.L., “Development and validation of a reduced reaction mechanism describing diesel fuel / syngas co-oxidation,” Fuel, 185:663-683, 2016. doi:10.1016/j.fuel.2016.07.039.

22.   Kavuri, C., Tiry, M., and Kokjohn S.L., “Experimental and Computational Investigation of Soot Production from a Premixed Compression Ignition Engine using a Load Extension Injection,” International Journal of Engine Research, 2016. doi: 10.1177/1468087416650073.

23.   DelVescovo, D., Kokjohn, S.L., and Reitz, R.D., “The Development of an Ignition Delay Correlation for PRF Fuel Blends from PRF0 (n-heptane) to PRF100 (isooctane),” SAE Int. J. Engines, 9(1):520-535, 2016. doi:10.4271/2016-01-0551.

24.   Kavuri, C.N., Klos, D., Kokjohn S.L., and Hou, D., “Blending the Benefits of Reactivity Controlled Compression Ignition (RCCI) and Gasoline Compression Ignition (GCI) Combustion using an Adaptive Fuel Injection System,” International Journal of Engine Research, 2015. doi: 10.1177/1468087415615255.

25.   Pan, L., Kokjohn, S.L., and Huang, Z., “Development and validation of a reduced chemical kinetic model for DME combustion,” Fuel, 160, 2015. doi:10.1016/j.fuel.2015.07.066

26.   Klos, D. and Kokjohn, S.L., “Investigation of the Effect of Injection and Control Strategies on Combustion Instability in Reactivity Controlled Compression Ignition (RCCI) Engines,” Journal of Engineering for Gas Turbines and Power, 138(1), 2015. doi: 10.1115/1.4031179

27.   Bhagatwala, A., Sankaran, R., Kokjohn, S.L., Chen, J.H., “Numerical investigation of spontaneous flame propagation under RCCI conditions,” Combustion and Flame, 162(9), 2015. doi: 10.1016/j.combustflame.2015.06.005

28.   Klos, D., Janecek, D., and Kokjohn, S.L., "Investigation of the Combustion Instability-NOx Tradeoff in a Dual Fuel Reactivity Controlled Compression Ignition (RCCI) Engine," SAE Int. J. Engines 8(2):821-830, 2015, doi:10.4271/2015-01-0841.

29.   Klos, D.T. and Kokjohn, S.L., “Investigation of the Sources of Combustion Instability in Low Temperature Combustion (LTC) Engines,” International Journal of Engine Research, 22(1), 2014. doi: 10.1177/1468087414556135

30.   Kokjohn, S.L., Musculus, M.P.B., and Reitz, R.D. “Evaluating Temperature and Fuel Stratification for Heat-Release Rate Control in a Reactivity-Controlled Compression-Ignition Engine using Optical Diagnostics and Chemical Kinetics Modeling,” Combustion and Flame, 162(6), 2015. doi: 10.1016/j.combustflame.2015.04.009

31.   Kokjohn, S.L. and Reitz, R.D., "RCCI and Conventional Diesel Combustion: A Comparison of Methods to Meet Light-Duty NOx and Fuel Economy Targets," International Journal of Engine Research, Vol. 14, No. 5 pp. 452-468, 2013. doi: 10.1177/1468087413476032

32.   Hanson, R.M., Curran, S., Wagner, R., Kokjohn, S.L., Splitter, D.A., and Reitz, R.D., "Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine," SAE Int. J. Engines, Vol. 5, No. 2, pp. 286-299, 2012. https://doi.org/10.4271/2012-01-0380.

33.   Kokjohn, S.L., Reitz, R.D., Splitter, D.A., and Musculus, M.P.B., "Investigation of Fuel Reactivity Stratification for Controlling PCI Heat-Release Rates Using High-Speed Chemiluminescence Imaging and Fuel Tracer Fluorescence," SAE Int. J. Engines, Vol. 5, No. 2, pp. 248-269, 2012. https://doi.org/10.4271/2012-01-0375.

34.   Kokjohn, S.L., Splitter, D.A., Hanson, R.M., Reitz, R.D., Manente, V. and Johansson, B., "Modeling Charge Preparation and Combustion in Diesel Fuel, Ethanol, and Dual Fuel PCCI Engines," Atomization and Sprays, Vol. 21, No. 2, pp. 107-119, 2011.

35.   Kokjohn, S.L., and Reitz, R.D., "Investigation of the Roles of Flame Propagation, Turbulent Mixing, and Volumetric Heat Release in Conventional and Low Temperature Diesel Combustion," ASME J. Eng. Gas Turbines Power, Vol. 133, No. 10, 2011.

36.   Kokjohn, S.L., Hanson, R.M., Splitter, D.A., and Reitz, R.D., "Fuel Reactivity Controlled Compression Ignition (RCCI): A Pathway to Controlled High-Efficiency Clean Combustion," International Journal of Engine Research, Vol. 12, No. 3, pp. 209-226, 2011.

37.   Puduppakkam, K.V., Kokjohn, S.L., Liang, L., Naik, C.V., Reitz, R.D., and Meeks, E., "Use of Detailed Kinetics and Advanced Chemistry-Solution Techniques in CFD to Investigate Dual-Fuel Engine Concepts," SAE Int. J. Engines, Vol. 4, No. 1, pp. 1127-1149, 2011. https://doi.org/10.4271/2011-01-0895.

38.   Hanson, R.M., Kokjohn, S.L., Splitter, D.A., and Reitz, R.D., "Fuel Effects on Reactivity Controlled Compression Ignition (RCCI) Combustion at Low Load," SAE Int. J. Engines, Vol. 4, No. 1, pp. 394-411, 2011. https://doi.org/10.4271/2011-01-0361.

39.   Kokjohn, S.L., Hanson, R.M., Splitter, D.A., Kaddatz, J., and Reitz, R.D., "Fuel Reactivity Controlled Compression Ignition (RCCI) Combustion in Light- and Heavy-duty Engines," SAE Int. J. Engines, Vol. 4, No. 1, pp. 360-374, 2011. https://doi.org/10.4271/2011-01-0357.  

40.   Bergin, M., Musu, E., Kokjohn, S.L., and Reitz, R.D., "Examination of Initialization and Geometric Details on the Results of CFD Simulations of Diesel Engines," ASME J. Eng. Gas Turbines Power, Vol. 133, No. 4, 2011.

41.   Kokjohn, S.L., and Reitz, R.D., "An Investigation of Charge Preparation Strategies for Controlled PPCI Combustion using a Variable Pressure Injection System," International Journal of Engine Research, Vol. 11, No. 4, pp. 257-282, 2010. https://doi.org/10.1243/14680874JER06409.

42.   Splitter, D.A., Hanson, R.M., Kokjohn, S.L., Rein, K., Sanders, S., and Reitz, R.D., "An Optical Investigation of Ignition Processes in Fuel Reactivity Controlled PCCI Combustion," SAE Int. J. Engines, Vol. 3, No. 1, pp. 142-162, 2010. https://doi.org/10.4271/2010-01-0345

43.   Hanson, R.M., Reitz, R.D., Splitter, D.A., and Kokjohn, S.L., "An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine," SAE Int. J. Engines, Vol. 3, No. 1, pp. 700-716, 2010. https://doi.org/10.4271/2010-01-0864

44.   Kokjohn, S.L., Hanson, R.M., Splitter, D.A., and Reitz, R.D., "Experiments and Modeling of Dual Fuel HCCI and PCCI Combustion Using In-Cylinder Fuel Blending," SAE Int. J. Engines, Vol. 2, No. 2, pp. 24-39, 2009. DOI: 10.4271/2009-01-2647

45.   Kokjohn, S.L., Swor, T.A., Andrie, M.J., and Reitz, R.D., "Experiments and Modeling of Adaptive Injection Strategies (AIS) in Low Emissions Diesel Engines," SAE Int. J. Engines, Vol. 2, No. 1, pp. 16-32, 2009. https://doi.org/10.4271/2009-01-0127.

46.   Kokjohn, S.L. and Reitz, R.D. "A Computational Investigation of Two-stage Combustion in a Light-Duty Engine," SAE Int. J. Engines, Vol. 1, No. 1, pp. 1083-1104, 2008. DOI: 10.4271/2008-01-2412.

 

 

Update Profile